Theoretical Computer Science 64 (1989) 331-342 331
North-Holland

NOTE

ON NECIPORUK’S THEOREM FOR BRANCHING PROGRAMS

Noga ALON* and Uri ZWICK

Department of Mathematics and Computer Science, Sackler Faculty of Exact Sciences, Tel-Aviv
University, Tel-Aviv, Israel 69978 E

Communicated by M. Paterson
Received January 1988
Revised May 1988

Abstract. Neéiporuk’s theorem yields lower bounds on the size of branching programs computing
specific boolean functions. Specifically, if f is a boolean function, V;, ..., V, is a partition of the
set of variables of £, and ry, (f) is the number of different restrictions of f to V,, then the size of
every branching program which computes f is at least
) v log "v,(f)
i=1 loglog ry, (f)

where ¢ is some positive constant.

In this note we determine the largest monotone non-decreasing function ((-) for which
Necéiporuk’s theorem remains true when the above sum is replaced by Zf , 1y (f)). We show
that t(m)~3log m/(loglog m) and obtain explicit formulae for it.

1. Introduction
We start with some basic definitions.

Definition 1.1 (Boolean functions, assignments, restrictions). A boolean function is a
function f:{0, 1}¥ > {0, 1} where V is a finite set. Suppose that U < V. A function
a:U~{0,1} is called an assignment. Denote by f,:{0, 1}V Y - {0, 1} the function
obtained from f by assigning the variables of U the values specified by «. The
function f, is called a restriction of f to V — U. Denote by r;,(f) the number of
different restrictions of f to U.

Definition 1.2 (branching programs). A branching program P is a directed acyclic
graph, with a special vertex s, called the séurce, and two other special vertices called
sinks. All the non-sink vertices are labeled by variables from the set {x;,..., x,}
and the two sinks are labeled, respectively, by the constants 0 and 1. Every non-sink
vertex has fan-out two and the edges leaving it are labeled by 0 and 1. Each

* Research supported in part by Allon Fellowship and by a Bat Sheva de Rothschild Grant.

0304-3975/89/$3.50 © 1989, Elsevier Science Publishers B.V. (North-Holland)

332 N. Alon, U. Zwick

assignment of values b,, ..., b, to the input variables x;,..., x, defines a unique
computation path which starts at s, leaves every non-sink vertex labeled by x; through
the edge labeled by b;, and ends in a sink labeled by f(b,,..., b,). The function f

is said to be the function computed by the program P. When we want to emphasize
that s is the source of the program P we denote the program by (P, s).

The size of the program P is defined to be the number of non-sink vertices in it.
If f is a boolean function, we denote by BP(f) the minimal size of a branching
program which computes f.

If P is a branching program, U is a subset of its variables, « is an assignment
of values to the variables of U, and v, u are two vertices in P, we say that v —"u
iff the unique computation path which starts at », leaves every non-sink vertex
labeled by a variable x € U through the edge labeled by a(x) and ends in a sink
or a non-sink vertex labeled by a variable not in U passes through u.

The descendants of a vertex v in a branching program P are all the vertices in P
(including v itself) to which there are directed paths from v.

Neciporuk’s theorem for branching programs states the following.

Theorem 1.3 ([2], see also (4]). If £:{0,1}" {0, 1} is a boolean function and if
Vi,..., V, is a partition of V then .

BP(f)=¢ EI log log rv.(f) ;

where ¢ is some fixed positive constant.
(Here and throughout the paper all the logarithms are natural.)

Definition 1.4 (The set @). Denote by @ the set of all functions 7(-) for which the
relation BP(f)=Y!_ #(ry(f)) holds for every function f and every partition
Vi s e AV

In this note we determine the largest monotone non-decreasing function #(+) in
6. In Section 2 we define a function T(-) and define () to be its integral inverse.
We then show that t€ @ and study the asymptotic behavior of T(-) and (-). We
prove that t(m)~3log m/(loglog m). At the end of the section we obtain explicit
formulae for T(-) (and therefore also for £(-)). In Section 3 we show that if f€ @
then #(T(n))= ((T(n)) = n forevery n = 1. In particular, (-) is the largest monotone
non-decreasing function in 6.

This shows that the function 3 log m/(log log m) is indeed the asymptotically best
function which can be used in Theorem 1.3. The function 7(-) defined in this note
is slightly better than the functions used in the previous presentations of Neciporuk’s
theorem. In [4], for example, a function {'(-) which satisfies '(m)~
;log m/(log log m) was used.

Neciporuk’s theorem for branching programs 333

It is known that the bounds obtained using Neliporuk’s method cannot grow
faster than O(n/log n)>. Sequences of functions for which the lower bounds using
Net¢iporuk’s method have this asymptotic behaviour were built by Neéiporuk [2]
and Paul [3].

Neciporuk’s method can also be used in order to obtain lower bounds on the
formula complexity of boolean functions. More specifically, for every basis {2 there
exists a positive constant ¢, such that for every function f and every partition
Vi,..., V, of f’s variables

Lo(f)=ca él log, ry(f)—1,

where L, (f) is the formula complexity of f over (2. Denote by B, the basis which
contains all the functions of k or less variables. Denote by ¢, = ¢p, the best constant
for which the above relation always holds. In [5], the behavior of the sequence ¢,
is studied. It is shown there that ¢, =1/log, 5, ¢s=1/(2log,6), ¢,=1/(3log, 6).
Furthermore, ¢s, ..., ¢z are expressed as the limits of easily computed sequences.
For the next values of ¢, extremely tight approximations are obtained and it is
shown that ¢, ~log, k/k*. In this note we combine methods similar to the ones used
in [5] together with some new ideas.

2. The functions T(-) and #(-)
The functions T(-) and t(-) are defined as follows.

Definition 2.1 (The functions T(-) and t(-))

there exists a branching program which computes f }

T(n)= :
(m) max{;v(f) in which exactly n vertices are labeled by variables from V
A moment’s reflection shows that the value of T(n) is finite although no bound was
placed on the number of vertices labeled by variables not in V. (It certainly does
not exceed the total number of boolean functions on V.)

The function #(-) is defined to be the integral inverse of T(-), that is:

t(m)=min{n=1|T(n)=m}, m=1.
The motivation behind these definitions becomes clear in the next simple theorem.

Theorem 2.2. If £:{0,1}¥ > {0, 1} is a boolean function and V,, . . ., V, is a partition
of Vthen BP(f)=Y"_, t(ry (f)). In other words t € ©.

Proof. Let P be a branching program of size BP(f) which computes f. Denote by
n; the number of vertices in P labeled by variables from V.. It is clear that
Y7, n;=BP(f). Notice now that ry,(f)< T(n;) and therefore n,= t(ry (f)). Sum-

i=1

ming up we get that BP(f)=Y"7_ m=Y1_ t(r,(f)). O

i=]

334 N. Alon, U. Zwick

In order to estimate and then to compute the function T(:) we introduce the
notion of canonical programs.

Definition 2.3 (Canonical programs). A canonical branching program P is a branching
program with n non-sink vertices each one of them labeled by a different variable
from the set {x,,...,x,}, and in which all the edges are directed from *““small to
large”, i.e., if x;— x; is an edge in P then i<j. Notice that every function which
can be defined using a canonical program can also be defined using a canonical
program whose source is x;. (If x; is the source of the program then simply redircct
the two edges emanating from x, into x,.) Thus we assume that the source of each
canonical program is x,. Denote by CP, the set of all canonical programs of size
n. Denote by CF, the set of ali functions defined by the programs in CP,. it is casy
to see that |CF,|<|CP,| =[(n+1)1]".

Lemma 24. T(n)<|CF,|<[(n+1)!].

Proof. Let £:{0, 1}" = {0, 1} be a function defined by a program P, let U< V and
siuppose that exaclly n verlices in P are labeled by vari d
I'U(f) = T(H).

Relabel the non-sink vertices in P by distinct new variables. Denote the program
obtained by P’, denote by U’ the set of variables which label the vertices formerly
labeled by variables from U, and denote by [* the function computed by P'. It is
easy to see that ry.(f')=ry(f) and therefore also ry(') = T(n). Without loss of
generality, we may assume that U’'={x,,..., x,}. We can also order the variables
in U’ in such a way that if there is a directed path from the vertex labeled by x, to
the vertex labeled by x; then i <.

Notice now that when we assign constants to the variables not in U" we are left
with a canonical program on the variables x,, ..., x,. Thus T(n)=ry(f)<|CF,| =
[(n+1)! O

b
<
&
=

In Lemma 3.3 below we show that in fact T(n)=|CF,|.

Definition 2.5 (The sets CF} and the function T*(+)). Denote by CF3 the set of
CF, functions which depend on all the variables x,, ..., x,. Denote T*(n) =|CF}|.
It is clear that T(n) =Y, _, ($)T*(k).

Lemma 2.6. (i) Let P e CP, be a canonical program. Then (P, x,) defines a function
which depends on all the variables x, , .. . , x,, if and only if P contains no parallel edges
and the indegrees of all its vertices (except x,) are nonzero.

(1) Let P, Qe CP, be two distinct canonical programs. Denote by [and g the
Junctions defined by (P, x,) and (Q, x,). If fand g depend on all the variablesx,, . .., x,
then [# g.

Neéiporuk's thearem for hranching programs 335

Proof. (i): Clearly, if (P, x,) contains a pair of parallel edges, or if some vertex in
P different from x, has indegree 0, then the function defined by (P, x,) does not
depend on all the variables x;,.. ., X,,.

We prove the converse by induction on n. If n =1 then since P does not contain
parallel edges, the function computed by P is either x, or %,. These functions do
depend on the variable x,.

Suppose now that n>1. Since the indegree of x, is nonzero, there exists an
a € {0, 1} for which x, —“ x,. Since P contains no parallel edges, x, — ° x; for some
k> 2. (Actually, the a-edge from x, may go into one of the sinks. The proof in this
case is similar.) Denote by A and B the sets of all descendants of x,, and of x;
respectively, in P. We know that Au B = {x;, ..., x,}. By the induction hypothesis
the function f,, defined by the program (P, x,), depends on all the variables of A,
and the function f;, defined by the program (P, x,.) depends on all the variables of
B. Since x,€ A— B, it is clear that f, # [, and therefore the function [= (x,@a)f, v
(x,60 a)f;, which is the function defined by (P, x,), depends on all the variables
Xyl e s

(ii): The proof is again by induction on n. For a=1 the claim clearly holds.
Suppose now that n> 1. Let k be the smallest index for which the edges emanating
from x; in P and © are not identical. Denote by A (respectively by B}, the set of
all descendants of x, in P (in Q respectively). Denote by P, the subprogram of P
induced by A and by the sinks, and by @y the subprogram of Q induced by B and
the sinks. Denote by f,, g, the functions computed by (P,,x,) and (Qp, xz)
respectively. There exists an assignment « to the variables x,;,..., X, such that
f. =fa and g, = gg. By part (i) of this lemma f, and gz depend on all the variables
of A and B respectively. If A # B then clearly f4 # gz, otherwise the fact that f4 # g5
follows from the induction hypothesis. Therefore f, # g, which implies that f'# g,
as required. [J

We can now prove the following theorem.
Theorem 2.7. T(n)= T*(n)> (kY (n—k)! for every 1=k=!n.

Proof. We build more than {k!)"‘”"'(n—k)! different canonical programs with no
parallel edges in which the indegrees of all the vertices except x, are nonzero. Using
the two parts of Lemma 2.6, we get that the functions defined by these programs
(when x, serves as the source) are all distinct. Therefore T(n)= T*(n)=|CF% >
(k)" M (n—k)!.

We assume for simplicity that k|n (the general case is similar). The programs
are constructed in the following way: We partition the n vertices Xx,,..., X, into
n/k blocks of k vertices each. Each adjacent pair of vertices in the first block is
connected by an 1-edge. The 0-edges emanating from the vertices of the ith block,
i< n/k, are directed into the vertices of the (i + 1)st block in such a way that no
two of them enter the same vertex. Notice that the indegree of every non-sink

336 N. Alon, U. Zwick

vertex is now exactly 1 and that the number of possible choices up to now is
(k!)(l/k} Tk

In order to complete the programs we have to specify the 0-edges emanating from
the last layer (there are (k+1)! choices), and the 1-edges emanating from the last

wartar Al the Bret hlack and fram ths varticss in thse rect Al the hlaske Tha anmhsr
Vol Ul e dion Galon cii 31U s YUl uivud Bdl tiih Ewot Vi v GiUvng. 10 uiliuied

of choices here is (n —k-+1)! (notice that we are not allowed to choose parallel
edges). This completes the proof. Bl

In fact, as pointed out by one of the referees, one can easily prove a result which
is slightly stronger than the result of Theorem 2.7. For example, if n =2 —1 we can

get
o] 5(F):

using the following argument: partition the n nodes into k=1 blocks of size 1,
2,...,2% " Direct the edges emanating from a block into the next block in such a
way that the indegree of each node (except the source) will be exactly one. In other
words, construct a complete binary tree. The edges emanating from the last block
can now be freely chosen. This result can be easily extended to cover the case where
n is not of the specified form. However, the details are somewhat more cumbersome.
As we shall see in the next corollary, the present form of' Theorem 2.7 is sufficient
for our purposes.

Corollary 2.8. log T(n)~2nlog n, ((m)~3%log m/(log log m).

Proof. We know that (kD" “l(n—k)!= T(n)=<[(n+1)!]? for every 1=k=}n
Choaosing k~n/log n we immediately get that log T(n)~2n log n and therefore
t(m)~3logm/(loglog m). O

For the sake of completeness we state two formulae which can be used in order
to compute the exact values of T¥(n), and therefore also of T(n) and t(m). The
proof of these formulae appears in the appendix. Note however that although these
formulae determine {(m) precisely for all m, they do not supply immediately the
asymptotic behavior of the function (), which was determined in the last corollary.

Theorem 2.9

'I'”‘(n]=h-:+1}:vr.!!-—ﬂg:l <:>T*(k) n=1

k=1

='f{~1}“{:}{n—k+1)s(n—ku n=1,

k=0

WNeciporuk’s theorem for branching progrars 337

<:>=<;:l>+n{n—l)<";1> k>1,n>1,

[:}:(n—k+l){n —k)[::ilﬂ-["; '], k>0,n>1

<1>_[1 ifk=1, [1}_[1 iflk=0,
k/ L0 otherwise; k) Lo otherwise.

3. Odd-even branch

where

and

The way the functions T(:) and () were defined insures that € @ (Theorem
2.2). In order to prove that if t'(m)>t(m) for some m then ('€ @ or, pushed to
the limit, to prove that if

t'imy) if m=mg,

t'(mg) > 1(my) and ’(”‘)={g otherwise

then 7¢ @, we try to construct a sequence of functions {f,},., such that the set of
variables of f, can be partitioned into p,+1 subsets V,,,..., V,,’,,:, U, in such a
way that ry, (f)=m for all 1 =i= p, and such that p,t(m)/BP(f,)=""" 1. In this
section we are able to construct such sequences when m = T(n) for some n. For
these constructions we turn the famous odd-even sorting networks (see for example
[1]) into branching programs.

Notice that if ('(T(k))> t(T(k))=k for some k and t'(1), t'(2), t'(3), £'(4)=1
then the fact that t'# @ can be proved in a much simpler way. Simply build a
canonical program P & CP, which defines a function f for which there exists a subset
V of the variables of size k for which ry(f) = T(k). Now, complete V into a partition
of all the variables by defining singletons U, , ..., U,_; for the remaining variables.
Since 1=<ry (f)=<4 for every 1 =i<n—k we get that

n-k
BP(f)=n=k+(n—-k)<((T(k)+(n—k)<(ry(f))+ L '(ry(f))
=]
and therefore 1’2 ©.
The result we prove is of course more general. We begin by defining the odd-even
branching programs.

Definition 3.1 (odd-even branch). For every n=1 and every even m =2 define
OEB,,,, to be the branching program whose graph is composed of n layers of m
vertices each, in which the connections between the layers are as shown in Fig. 1.
More formally, denote the ith vertex in the jth layer by x;; where 1 =i=m and

338 N. Alon, U. Zwick

Fig. 1. Odd-even branching program.

1=j=n If j <n then the 0-edge emanating from x; ; goes to x; 4, and the 1-edge
from x;; goes tO X;.(—y'* j+ (the first index here is taken modulo m). The 0-edges
of the vertices in the last layer go into the 0-sink and the 1-edges go into the 1-sink
(as shown in Fig. 1). The non-sink vertices of OER,, , are labeled by distinct variables.
For simplicity ws use x, ; to denote also the variable labeling the vertex x; ;. The
source of OEB,, , is x; ;. The function computed by OEB,, , is denoted by f,, ..

Lemma 3.2. Let m=1 be an even integer. For every function w:{1,...,m}—
{1,...,m} (not necessarily a permutation) there exists an assignment o of constants
to the variables {x, |1=i=m, 1=<j=m} of OEB,, n. under which x;y—" X_(5, sy
Jor every 1sism.

Proof. If 7 is 2 permutation then the claim follows immediately from the fact that
Odd-Even Sort is a sorting network.

Suppose now that @ is not a permutation. Define the scts A; =« '(i) for 1 <i< m.
Choose a permuation ' such that if A, #@ then i€ 7'(A;) and such that =’ is
monotone decreasing on every A,. We know that there exists an assignment a under
which Xx;, = X «iy.me for 1 =<i=<m. We may assume that the paths x;; =" X_(;) w1
do not use the l-edges x,;, — x, +; or X, ;— X, ,;, which are not present in the
ordinary odd-even Sort. Since 7' is decreasing on every A;, we gel that every pair
of paths from the set {x;; —“ x,,(j,.m+ | € A;} must cross one another. In particular,
if A;#@ and #'(k)=1i then all the paths from {x, = X_«;; ms+1|J € A;} cross the
path x,; =" x,,..,. Suppose now that j& A, and that the paths x,;, =% X, ., and
X =" X; 4y Cross one another between rows a and a + 1, and between layers b

140 N.Alon, U. Zwick

oy @il

Fig. 3. Building the assignment a.

satisfies Yo —>"* Yarky» Yk1 = Yoy Zko=>"* Yos Zk—1 —% y_, (again y, and y_, are
the sinks). The union of all these assignments forms the desired assignment «. [

Theorem 34. [f fe ®, then ((T(k))=k.

Proof. Choose m > (2k +7)/3 and consider the sequence of functions {f,,, .} »-,. The
previous lemma shows that the variables of f,, can be partitioned into subsets
Vi,..., V,, Uinsuch a way that |Vi|=Kk, ry(f,..)=T(k) for 1<i<p, and such
that (kp,,/mn)—""%1.

If f= & then we have

P

mn = BP(f,) 2 L 1y, (fu)) = PaH(T(K))

or {{(T(k))=(mn/p,) =""% k as required. [J

Corollary 3.5. If fc @ and [is monotone non-decreasing, then (k)= t(k) for every
k=1.

Proof. If i€ @, T(k—1)<m=T(k) and 1(m) > t(m)=t(T(k)) then we also have
I(T(k))=1f(m)>t(m)=t(T(k)) which is a contradiction to the last theorem. [

Acknowledgment

We would like to thank the referees for their helpful comments.

Neciporuk’s theorem for branching programs 341
Appendix

Proof of Theorem 2.9. According to Lemma 2.6, T#(n) is equal to the number of
different canonical programs which define functions that depend on all the variables
Xy, ..., X;. We know that these functions do not contain parallel edges, and that
the source of each one of them is x,. The total number of canonical programs
satisfying these two conditions is (n+1)! - n!. From this number we have to subtract
the number of canonical programs which satisfy the above two conditions but define
functions that do not depend on all the variables x,, ..., x,.

Let A be a subset of {x,, ..., x,} with x,€ A. If (P, x,) is a program which defines
a function that depends on all the variables of A and only on them, then it is clear
that the edges emanating from A are directed into other vertices in A or into the
sinks. If the function is to depend on all the variables of A, these edges can be
chosen in T*(|A|) different ways. The edges emanating from the vertices not in A
may now be chosen arbitrarily. The only constraint is that no parallel edges are
allowed. These edges can be therefore chosen in HI:M (n—j+2)(n—j+1) different
ways. Therefore

(n)=(r+1)!-nt= ¥ T(A]D- Il (n—j+2)(n-j+1)

Asix,....x,) HEA

N EA i

1
=(n+1)!-n!= Y T*k)- ¥ Il (n=j+2)(n—j+1).
k=1 Ac{x;,...,x,) xEA
nEA
|Aj=k

Denote

<">= Y T (n=j+2)n—j+1)

Ac{x...x,) xEA

= ¥ Il (n—j+2)(n-j+1)

Acql,..n} jeA

leA
[Al=k
== [T (j+1)
B={l,..n—1} jeB
[Bl=n~—k

It is easy to check that (i) satisfy the required recursive relations.

Alternatively, we can count, using the principle of inclusion and exclusion, the
number of canonical programs with x, as the source in which the indegrees of all
the vertices, except x,, are nonzero. Denote by A, the set of the canonical programs
in CP, with no parallel edges in which the indegree of x; is zero. It is easy to check
that if 1 <i,<i,<:-:<i,<n then

k
A, n Ayl =(n—k+1)! - (n—K)!- [l (n—k+j—i+2)(n—k+j—i+1).

=1

342 N. Alon, U. Zwick

Therefore
A, A nAl=(n—k+1)1- (n—k)!- {"}
l<h<ip<---<igsm k
where
n k
{]= Yl (i—kj=—i42)n= k=i +1)
k 1<ij<ig=--<igmn j=1
and therefore according to the principle of inclusion and exclusion
T*(n)=|A30: - -0 A
n—1
=(n+11-n=3% (- ¥ Ay n A
k=1

I=h<iy<--<iy=n
n—1 n
=3 (-U"l }(n-k-**l)!-(n—k)!.
k=0 k

Again, it is easy to check that {;} satisfy the stated recursive relations. [}

Using the above formulae we get
T*(1)=2, T*(2) =38, T*(3) =56, ‘
T*(4) = 608, T*(5) = 9440, T*(6) = 198272,
T#(7)=5410688, T*(8)=186043904, T%(9)="7867739648

T(1) =4, T(2)=14, T(3) =88,
T(4) =890, T(5)=13132, T(6) =265286,
T(7)=7020256 T(8)=235455602, T(9)=9754845460.

References

[1] D.E. Knuth, The Ari of Computer Programming, Vol, 3, Seriing and Searching (Addison-Wesley,
New York, 1973).

[2] E.I. NeEiporuk, A Boolean function, Dokl Akad. Naul SSSR 169(4) (1966) [Russian); Soa. Math.
Dokl 7(4) (1966) 999-1000 (English translation).

[3] W.1. Paul, A 2.5n-lower bound on the combinatorial complexity of boolean functions, STAM [
Comp. 6(3) (1977) 427-443.

[4] 1. Wegener, The Complexity of Boolean Functions, Wiley-Teubner Series in Computer Science (1987).

[5] U. Zwick, Optimizing Neciporuk’s theorem, Technical Report 86/1987, Department of Computer
Science, Tel-Aviv Univeristy.

